Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR

نویسندگان

  • T. Röckmann
  • S. Walter
  • B. Bohn
  • R. Wegener
  • H. Spahn
  • T. Brauers
  • R. Tillmann
  • E. Schlosser
  • R. Koppmann
چکیده

Formaldehyde of known, near-natural isotopic composition was photolyzed in the SAPHIR atmosphere simulation chamber under ambient conditions. The isotopic composition of the product H2 was used to determine the isotope effects in formaldehyde photolysis. The experiments are sensitive to the molecular photolysis channel, and the radical channel has only an indirect effect and cannot be effectively constrained. The molecular channel kinetic isotope effect KIEmol, the ratio of photolysis frequencies j (HCHO→CO+H2)/j (HCDO→CO+HD) at surface pressure, is determined to be KIEmol= 1.63 +0.038 −0.046. This is similar to the kinetic isotope effect for the total removal of HCHO from a recent relative rate experiment (KIEtot=1.58±0.03), which indicates that the KIEs in the molecular and radical photolysis channels at surface pressure (≈100 kPa) may not be as different as described previously in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR

HONO formation has been proposed as an important OH radical source in simulation chambers for more than two decades. Besides the heterogeneous HONO formation by the dark reaction of NO2 and adsorbed water, a photolytic source has been proposed to explain the elevated reactivity in simulation chamber experiments. However, the mechanism of the photolytic process is not well understood so far. As ...

متن کامل

A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mix...

متن کامل

Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR

The simulation chamber SAPHIR at Forschungszentrum Jülich has UV permeable teflon walls facilitating atmospheric photochemistry studies under the influence of natural sunlight. Because the internal radiation field is strongly affected by construction elements, we use external, radiometric measurements of spectral actinic flux and a model to calculate mean photolysis frequencies for the chamber ...

متن کامل

Numerical Simulation of Flash Boiling Effect in a 3-Dimensional Chamber Using CFD Techniques

 Flash Boiling atomization is one of the most effective means of generating a fine and narrow-dispersed spray. Unless its complexity its potential has not been fully realized. In This Paper, a three dimensional chamber has been modeled with a straight fuel injector. Effect of Flash Boiling has been investigated by computational fluid dynamics (CFD) techniques. A finite volume approach with the ...

متن کامل

Measurement of atmospherically significant oxygenated volatile organic compounds

The performance of a new chemical ionization reaction time-of-flight mass spectrometer (CIR-TOF-MS) utilising the environment chamber SAPHIR (Simulation of Atmospheric Photochemistry In a large Reaction Chamber – Forschungzentrum J ¨ ulich, Ger-many) is described. The work took place as part of the ACCENT (Atmospheric Com-5 position and Change the European NeTwork for excellence) supported oxyg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010